- partiell-rekursive Funktion
- частично-рекурсивная функция
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Partiell-rekursive Funktion — Die Klasse Pr der μ rekursiven Funktionen oder partiell rekursiven Funktionen spielt in der Rekursionstheorie, einem Teilgebiet der theoretischen Informatik, eine wichtige Rolle. Sie beschreibt die Menge aller Funktionen, die im intuitiven Sinn… … Deutsch Wikipedia
My-rekursive Funktion — Die Klasse Pr der μ rekursiven Funktionen oder partiell rekursiven Funktionen spielt in der Rekursionstheorie, einem Teilgebiet der theoretischen Informatik, eine wichtige Rolle. Sie beschreibt die Menge aller Funktionen, die im intuitiven Sinn… … Deutsch Wikipedia
Μ-rekursive Funktion — Die Klasse Pr der μ rekursiven Funktionen oder partiell rekursiven Funktionen spielt in der Rekursionstheorie, einem Teilgebiet der theoretischen Informatik, eine wichtige Rolle. Sie beschreibt die Menge aller Funktionen, die im intuitiven Sinn… … Deutsch Wikipedia
Partielle Funktion — Eine partielle Funktion von der Menge X in die Menge Y ist eine rechtseindeutige Relation, das heißt eine Relation, in der jedes Element der Menge X höchstens einem Element der Menge Y zugeordnet wird. Der Begriff der partiellen Funktion ist in… … Deutsch Wikipedia
Totale Funktion — Eine partielle Funktion von der Menge X in die Menge Y ist eine rechtseindeutige Relation, das heißt eine Relation, in der jedes Element der Menge X höchstens einem Element der Menge Y zugeordnet wird. Der Begriff der partiellen Funktion ist in… … Deutsch Wikipedia
Partielle charakteristische Funktion — Die halbe charakteristische Funktion oder partielle charakteristische Funktion ist eine Funktion der Mathematik, die eine Menge identifiziert. Sie ist folgendermaßen definiert: χ A : A → {1}, a → 1. Wie man sehen kann, steckt die ganze „Magie“… … Deutsch Wikipedia
Halbe charakteristische Funktion — Die halbe charakteristische Funktion oder partielle charakteristische Funktion ist eine Funktion der Mathematik, die eine Menge identifiziert. Sie ist folgendermaßen definiert: χ A : A → {1}, a → 1. Wie man sehen kann, steckt die ganze… … Deutsch Wikipedia
Kleenesche Normalform — Die Kleensche Normalenform ist ein Begriff aus der Berechenbarkeitstheorie. Sie besagt, dass man jede partiell rekursive Funktion mit Hilfe nur eines einzigen μ Operators (While Schleife) darstellen kann. Beweisidee Um zu beweisen, dass jede… … Deutsch Wikipedia
Church'sche These — Die Church Turing These (benannt nach Alonzo Church und Alan Turing, auch Churchsche These genannt) trifft Aussagen über die Fähigkeiten einer Rechenmaschine. Sie lautet: Die Klasse der Turing berechenbaren Funktionen ist genau die Klasse der… … Deutsch Wikipedia
Churchsche These — Die Church Turing These (benannt nach Alonzo Church und Alan Turing, auch Churchsche These genannt) trifft Aussagen über die Fähigkeiten einer Rechenmaschine. Sie lautet: Die Klasse der Turing berechenbaren Funktionen ist genau die Klasse der… … Deutsch Wikipedia
These von Church — Die Church Turing These (benannt nach Alonzo Church und Alan Turing, auch Churchsche These genannt) trifft Aussagen über die Fähigkeiten einer Rechenmaschine. Sie lautet: Die Klasse der Turing berechenbaren Funktionen ist genau die Klasse der… … Deutsch Wikipedia